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SUMMARY

/00‘4{3>

The study of cross-relaxation effects in paramagnetic crystals
is of great intrinsic interest to millimeter wave maser technology
because of the possibility of obtaining maser amplification at higher
frequency than that of the pump source. In this thesis the quantum
mechanical calculation of cross relaxation rates, the rate equation
analysis of the maser, and the experimental measurement of cross-
relaxation rates are presented. It was shown that in materials
such as ruby or emerald the cross~relaxation rate is not sufficiently
strong to be practical to build a maser with its signal frequency much
larger than its pump frequency. Howev_er, cross-relaxation processes

could hinder or assist maser amplification in a given maser amplifier.

iii




CHAPTER I
INTRODUCTION

The study of relaxation effects in paramagnetic crystals is
carried on by many wrkers because of its great intrinsic interest
and its importance to maser technology. Until 1958 it was thought
that there were only two kinds of relaxation processes in these
crystals, namely the spin-spin and spin~lattice processes character-
ized by the relaxation times T, and T, respectively. In 1958

1 gemonstrated that, under certain

Bloombergen and his coworkers
conditions, terms in the dipole-dipole interaction Hamiltonian

2
vhich may be disregarded in the camputation of '1'2 may lead to a

_new and important relaxation effect which they called cross relax-

ation. This process is characterized by a relaxation time T 01 whose
magnitude, for cases where cross relaxation processes are physically
important, lies in the range T2=‘; Toy <T1. The lower limit on T21
corresponds to the fact that T2 is the fastest possible spin-spin
interaction time and cross relaxation is the result of a spin-spin
interaction process. The upper limit results from the fact that if
T21 > Tl the effects of crocs relaxation will be masked by those of
the spin-lattice relaxation.

As a simple example of a cross relaxation process let us con-
sidér the situation shown in Figure 1 where hfa. = ga@ HDC < hf =

gp QRDC ( & is the spectroscopic splitting factor, @ is the Bohr
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magneton and H‘Dc is the applied steady magnetic field). Such a

situation could arise from two different paramagnetic ions each with

spin s = 1/2 but with different spectroscopic splitting factors
being substitutionally added into the same diamagnetic host crystal.

I£ £, -1 = £, is very small, i.a., if the two pairs of levels
have almost the same energy spacing, a possible cross relaxation
process between the a and b species is one in which one g spin
makes a A m = +1 transition while simultaneously a b spin makes

a A m, = -1 transition. The excess energy hf,, will be taken up
by the total dipolar or internal energy oft he spin system. We

can write the Hamiltonian for this system as

1) H= Hm‘3+H.”+

where
1a) Hmawz é Pﬂbc' 20
. v ¢
is the Zeeman energy in the a pplied field in the general case. For

our special case we have

12') Hounaq 332906 Hoc.
H,) H.d' 2 KL‘ S S + z @L’ [S ' = 'S !'-.,)(.5. -s!)]

where Aij is -2 times the exchange integral :] = gigj @

and _I_'_ij is the radius vector comnecting the i-th and j-th spins.



Equation 1b can be rewritten as

2) Hiat= A1B+C+DyrE+F

where
2a) A= Et AL§(5ze5z,') A, = Xz‘ +§q (1- 300516;,)
2v) B ‘-'g: By, (Sﬂ'_s_" 15—{,5"0') B,= ZL X;’- %\ﬁ;-‘ (l*3cqs7'6;‘)
2¢) C =’§c Cyy (S,;Sz'wsz‘-&;) Cy = '%'ﬁis S 8;cosay; §L¢;'.
2) D=2 Dy (S350 585) i ¢ |
2e) E X By (S+i545) Ei= —3-\?;;5"\"9‘.; oy 655
2¢) F= £ P (S-15+) Fy=E5
Ty :
where S+1 and S_i are the spin raising and lowering operators

respectively and eij and ¢ i3 are the polar angles of :-“-ij with respect

to the coordinate axes.

If we take the usual case of H >> H we can treat H, , as a
. mag int? int
perturbation. The cross relaxation probability for the case under

discussion :‘le

3 Werz b I<EL €| Hunk [Ethfe, €-bh 31§, (het)
where Eap, (fab) is a normalized distribution function that, in
essence, gives the probability that the total dipole-dipole

interaction can absorb the energy hfab not accounted for by the

double spin flip aldne. This function, usually called the line

shape function, has its maximum value when fab = 0. The computation

of g (fab) is discussed in chapter II,




We note that not all of the terms of Hint given in Equation 2
will give rise to the desired spin flip process. In fact only the B ~
term (equation 2b) does so. This is an example of the rule that we
must use only those terms given by Equation 2( or possibly combinations
of those terms) in our Hint which give rise to the particular cross

relaxation transitions of interest.

It is an interesting historical fact that the very first solid
state microwave maser utilized the above type of cross relaxation
process although it was not recognized as such.3 The operation of
this maser, whose active ion was gadolinium, depended upon the fact
that, at the maser operating point, the frequency difference between
the two energy levels of a second rare earth impurity ion in the
crystal, cerium, was approximately equal to the frequency of the idler
transition in thea ctive ion. Thus cross relaxation between the two
transitions could take place. This gave rise to a new relaxation path
for the idler transition and because T21< Tl, cerium< Tl, sdler the
effective relaxation time of the idler transition was shortened enough
so that maser action could occur. .

Another possible cross relaxation situation is shown in Figure lb.

Here again we have two species of paramagnetic ions but in this case

we have Zfa = fb. The cross relaxation process for this case will be

two a spins making Ams = + 1 transitions while one b spin makes a

A ms = 1 transition. This is an example of harmonic cross relaxation.

5



For Hint in this case we must use combinations of the terms given in
Equations 2 Eeges BC.

If, by apulying a strong radio frequency signal at the frequency
fa’ we saturate the fa transition i.e., equalize the populations of
the m_ = + 1/2 and m_ = -1/2 levels of the a ions, it is evident that,
due to the coupling of the a and b ions via the cro:s relaxation process,
the fb transition will tend to saturate to a degree dependent upon the
strength of the cross relaxation coupling. This is an example of cross
saturstion which is of great importance in.maser work,

As an example of this importance we note that by using ruby as
the active material and excluding consideration of cross relaxation,
it should be possible to make I~band (around 1:OOmc.) masers that operate
at low magnetic fields (250-500 gauss) or at higher fields (around

'2000 gauss)g In practice, however, the low field maser operation is
better than expecte h. Before the discovery of cross relaxation this
behavior was mysterious, after its discovery the mystery vas easily
cleared upe In the low field case cross saturation effects tend to
minimize the population inversion of the signal transition thus re=-

' éucing themaser effect; while in the high field case cross saturation
acts to increase the population inversién thus enhancing the maser
effecth. BOgleh has shown that, by suitable modification of the low
field maser operating point, cross relaxation can be made to work to

the advantage of maser operation thus making low field Lovand maser

operation feasible.,




The energy level diagram illustrated in Figure lc is that of
an ion with a spin § = 3/2 e.g. chramium (Cr3*), placed in a magnetic
field whose magnitude and direction with respect to the magnetic
complex axes gives rise to a splitting of the energy levels such that
m.f32 = fhi. The situation shown here may lead to the operation of
a maser with a signal frequency higher than the pump frequency for
if we saturate the f32 transition, and if the cross relaxation
transition probability is large enough, the rhl transitionwill
become at least partially saturated thus giving rise to the possi=-
bility of population inversion at the frequency fh2 or at the frequency
f31, and each of these frequencles is larger than the pump frequency f32.
The essential difference between the maser operation described above and

the conventional three level maser where the signal frequency is always

‘less than the pump frequency lies in the effective multiplication of

the pump frequency by the factor m through the cross saturation effect.
Argms has succeeded in obtaining maser action at a signal frequency of
10,590 mc. with a pump frequency of 9595 mc. using the above configuration.
It is desirable for many purposes t o have a low noise continuous
wave amplifier such as a maser t hat will operate in the millimeter wave-
length region. If we have a suitgble pump source there is no recson
vwhy we cannot successfully operate a conventional maser in this region.
However, when we remember that for optimum results a conventional maser

should have a pump frequency at least of the order of twice the signal



frequency, a glance at various manufacturers!' catalogs shows that as
we go higher in frequency the number of tubes that are suitableas
pump sources with regard to frequehcy, power and, in many cases,
price. This is particularly true if we want to operate a maser at a
frequency above 75 Kmc. Indced, we may find that for certain
frequencies there are no commercially available sources. Thus it is
desirable to be able to operate a maser uéing a pump source whose
freguency is much lower than the cdesired signal'frequency. e have
seen that by utilizing cross relexation it is theoretically possible
to do this. The main purpose of this thesis will be to assess the
feasibility of building maser devices using cross relaxation effects
to obtain high signal to pump frequency ratios.

VWe shall discuss in Chapter T4 the calculation of the cross
relaxation transition probability indicating the usefullness of the
calculation, the difficulties involved and what we can learn from it
with regard to the magnitude of'T21 and its dependence upon the concen-
traticn of paramagnetic ioné s the state functions of the energy levels
involved in the process, the harmonic number m etc. Using these results,
together with a rate squation analysis of the rate of change of the
populations of the energy levels, we shall‘diséuss in Chapter IIT
the feasibility of the proposed massr device particularly with
signal frequency to the pump frequency. Chapter IV will be devoted to

the discussion of some experimental results relating to cross

relaxation.




CHAPTER 11

CALCULATION OF Gr05S RILAYXATION
TRAWSITION FPROBABILITY

By way of introduction to the orobl-m of caleulating the cross

relaxation transition probability w let us first look into the

or?
calculation of the induced absorption between two levels in a para-
magnetic system. To keep things simple let us assume a system with
total spin 551/2 where the nuclear magnetic momemt is zero. The

spin Hamiltonian for such a system is

) H=q@Hp' S +Hua qEHoc € > Hint

qﬁantum numbers m_ = - 1/2 (lcbeled 1) for the lower level and mg =

(labeled 2) for the upper levsl. The magnitude of the splitting is

5) AE, = E.-€, = q@Hoc= hf,,.

If we apply a microwave signal of frequency le to the system,

the induced radiative transition rate is given by

&) Wi s T8 [<-L IS5 71 9(6)

nomalized lineshape function.

When ,HD*, this system will consist of two energy levels with spin

where Hx is the amplitude of the applied radio frequency magnetic field

whose direction is assumed to be parallel to the x-axis, and g(f) is the



The calculation of the matrix element in ‘.«112 is elementary.
The calculation of the lineshape function is far from eleméntary;
in fact, no practical way has ever been found to calculate g(f)
directly in any realistic czse. The standard method for computing
g(f) is that of the method of moments 2’6’7. The n'th moment of g(f)

is defined as

(1 <47y~ [ £7qENAf where j:3<c)4f=4
-.m .

A method for calculating the moments is as follows. Let

(s

x)nn' be the matrix element connecting the single particle states

n and n'. Then the normalized second moment is given by
2 2 2
L3
(8) L£™»= 3‘0 {{nn' l(Sx)hh" }/hé, ’(SX)nh'l
where 'fnni = (H.,— H...')/h and H is given by Equation L.
Van Vieck? pointed out that this expression can be rewritten

as

(9) WY = ~ I L HS, -5 H]Z/Tr- (sx)*

where Tr stands for t he trace or diagonal sum.

The pfocess can be extended to higher moments. For instance,

the fourth moment is given by

(10) ‘;‘4(-(—4>= -Tr [HU-UH]Z/Tr(Sx =

where U = HSx -Sx He

10




In general, the 2k'th moment is civen by

(11) h'u(({l‘> = (—-l)K T [H,[H,. ... CH,5¢) ...Jz/-r',.(sj‘)k

where [H,Sx] T H S,"’SKH ,

Notz that in the above paragraph no mention is made of the odd
order moments. This is because we have made what is knownas the
"infinjte temperature" approximation. As shown by Pryce and StevensB,

it turns out that when we expand the moments as a function of
temperature the leading terms of the even moments are independent of
the temperature whereas the leading terms of the odd moments con-
tains the factor hf/kt (k is Boltzmann's constant and T is the

temperature in degrees Kelvin). As long as hf/kt € € 1, which is the

~ case throughout most of the microwave region even at L°K, we may

neglect the odd moments as compared to the even ones. When we are
working with millimeter wavelength energy separations at helium
temperatures this approximation brezks dowm, but we shall continue

to use it on the grounds that the first moment has little effect on
the line width but merely displaces the line from its room temperature

position and that the whole calculation becomes even more difficult if

we take the first moment into account

Even after this simplification we are still faced with the problem

of finding a closed expression for g(f) given all the even moments.

# For further information on 3his subject see Pryce and S’cevens8
and McMillan and Opechowski’,

n



This problem is complicated by the fact that, as we shall see in detail
later, the difficulty in calculating the moments increases very rapidly

with their order so that in practice most calculations are not carried
beyond the fourth moment and, indeed, the fourth moment itself is in
many cases only estimated. What is often done is t o choose a

Gaussian or Lorentzian lineshape and use it. The choice between them
is sometimes made on the basls of computational convenience, i.e.

the Gaussian shape is chosen, in the absence of other data. Of

course, in some cases the lineshape function is known a priori.

In other cases the goodness of fit between the experimental line-

shape and the assumed lineshape can be tested by comparing the

various moments. One such comparison that is commonly used is to
compare the ratio of the fourth moment to the square of the second
moment for both cases. Since the higher maments give progressively
more information about the wings of the line and less about the center,
in the absence of information about moments higher than the fourth,

all we can say, even when the ratio test shows a good fit, is that we
have a reasonable knowledge of the center of the line but do not know
very much about what goes on in the wings.

Now let us return to the calculation. From equations 2 and L we

have

(12) H= %@an% Sz, *é;f\(;szgsz,' +JZ>'£'B.'J' (5,5~ +S-¢ S‘ﬂ-)
: * . -
¥ E(C;I (Srusz,fszgsﬂ' ) +)2>{ Cey (S-cgz,' +S2,5-3 )

12




+ 2 E\Sﬂs,) + ZE: S__"_S-l .
ISL

It

where we have taken the magnetic field to be in the z direction. It
is clear that if we omit the temms of Equation 12 enclosed by the
braces S, = ? Szi will commute with the remaining terms of H and
hence will be a constant of the motion. Thus the selection rule
for S;; A m_ = #1 will be rigorously obeyed. The terms in the
braces have selection rules A my = + 1, -2 and when added to the
first part of Equation 12 will give additional selection rules

for the total Hamiltonian of A m, = 0, * 2, * 3 corresponding to

transitions at frequencies of f= 0, 2g @ HDc/h and 3g @ %c/h

‘respectively. We are interested only in the line at f =z g@Hy/h

(A m = +1) and so we must elininate the terms in the braces

from the Hamiltonian when calculating the moments of this line since
they give rise to new lines rather than to a broadening of the line
of interest. The inclusion of these satellite lines in the com~
pufation of the moments would lead to err911eously large values of
thé maments because, even though their intensity is low, ﬁhe
satellite lines would count heavily in the computation due to the
fact that their weighting factors, the frequency separation from

the center of the line of interest, is so large. The terms of Equa=-
tion 12 outside the braces constitute the truncated Hamiltonian which

1s to be used for this problen‘e

13



We note that we could have arrived at the same Hamiltc.mian
by taking the one ion energy tem, in this case the Zeeman term,
and adding to it those terms of Hint which commute with it.

The rest of the calculation is straightforward but tedious and
since we have no intrinsic interest in the spin 1/2 case we will
drop it at this point*.

The extension of the above method to the case of a system with
a spin 32.39: where a crystalline electric field is present was made
by Ishiguro, Kambe and U'suilo. An example of such a system is ruby

(c‘}-t‘ - A\zOB) . The one ion energy term is

13) HDL T (3 [‘3“ “DCZSZL + 3L(“')‘a§xi”"hcc's'ji)‘j f’D[S:t- -S(S“H)]

where $S=3/3.

Since in ruby S“V\%L and |Df=-D= § , we can write the one ion

term as

w) Ho =~ § [Sz; ~(98Hoc/$)S;, ]

where we have taken the magnetic field to be parallel to the c-axis
of the crystal which is also the z-axis of the magnetic complex
coordinate system. We have also dropped the constant term

since it does not contribute to the splitting of the energy levels.

The total Hamiltonian including interactions between the ions is

15) H s é Ho“.*‘ an"‘_
¢

# For further details see Van V’.l.eck2
iV
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.

The radiative transition probability for Amsz‘_\:l transitions,

where the microwave field is in the x direction,is given by
ol rf 2
16) w,.,,m’,r Sf-.g— |<W'S' H S, , Mgt ] j(f)

which is Equaf.ion 6 with an obvious modification.

The computation of the matrix element is straightforward
because, due to our choice of ﬂkparallel to the c-axis, each level
is a single pure sbin state. In the general case ﬂbc is not
parallel to the c-axis, i.e. the polar angles © and P of Hoc

with respect to the c-axis are not zero, and the wave function for

each energy level is a mixture of pure spin states which must be

calculated and hence makes the matrix element computation much more
difficult.

The calculation of the second moment proceeds according to the
"recipe" given in Equation 9 but as in the spin Sz 1/2 case, and for
the same reason, we must use the appropriate truncated Hamiltonian.
The Hamiltonian is found by taking the one-ion energy term and adding
to it those terms of H t which commute with it. This turns out to

in
be

1) H= ZHo + 2. A 55 S + 2.8y (SiS+ $i%5)

where
18) S¢S+ 5.Se= Pyt P'lz:) S*LS"j ‘P"ziplk.)
+ Vi Py Sai Sy PaiPesny + Pty (P3fy) S Sy Py Popy
+ Vhi Py S-S5 Pop Py + P Py S-iS4y PAT-o12)
15
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and T’qz_; s P.(,_}_ , P.-c[,_i and R'Sll"» are projection
operators corresponding to the states m, = 3/2,1/2=1/2 and =3/2

of the i'th ion respectively.

The use{of the projection operators is to ensure that we take
up only Amc=E | transitions and in addition only those combi-
nations of Amsztl transitions which have no net effect on the
total energy but merely serve to broaden the resonance line.

The above method for computing the moments of g(f) is some-
times termed the Van Vleck approach. It has the virtue of sim-
plicity as compared to other approaches when used on the simple
physical situations described above, Tt appears to be completely
adequate in the handling of systems where no crystalline field is
present or when we operate in such a mamner that EDC is parallel to
the z-axis. The extension of this method to cases where a crystal-
line field is present and EDC is not parallel to the z-axis is not
at all obvious. The main stumbling block arises from the fact that in
this case the one-ion enérgy term is given by Equation 13 and includes
both S, and Sy terms in addition to the SZ term. To pick out those
terms of Hint which comrute with Zquation 13 is far from trivial. A
mu.ch ﬁore systematic and elegant treatment is needed. Fortunately
one is availatle, baszd on the work of Pryce and Stevenss, which
uses projectioh operator techniques throughout. This technique as

used by Minkowski11 to calculate the cross relaxation transition

16




rate will be discussed later on, But first, realizing the.limi-
tations of the method, it will pay us to look at the extension of the
Van Vleck approach to the cross relzxation case as done b Hironelz,
who was the first to maks a calcvlation of the cross relaxation
effect in a substance having a crystalline electric field.

To illustrate Hirone's work, let us take for an example one
of the systems he used, hamely ruby with the one-ion spin Hamiltonian
given by Equation 1l where j@"yd&rf(see Figure 2)e Let us look at

the upper three energy levels. Ue note that
19) hty = Erfy ~Ctfy = 1(5311 € =2 “"&B

so that a possible cross relasxation process among these levels is one
in which three ions (i,3,k), initially in the levels m_= 3/2, -1/2,
and 3/2 respectively, make transitions so that they are finally in
the levels mg = 1/2, 1/2, and 1/2 respectively. With the setup as
shown i.e.G’ﬁ’O, the stete function for each energy level is a
single pure spin state so that the above level assignments can be
made unambiguously. The preocess described is obviously enersy cone-
servin; because of Zquation 19,

The probability of the indicated spin f1lip process is ;iven by

3) Wey = W2 [memat THat (5] Sinal 71 q(£)

17
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The computetion of the matrix element in this case is nore
complicatsd than that in the case of the radiative transition
probability becauss H . (ijk) is = combination of terms of
Equaiion 2 rather thar just SX. The lowest order combination of
such terms of Zquation 2 which gives riseto the desired process
is the product of B anc D with arrropriate reletierin: of the sub-

scripts. lLetting n' denotz an ntermediste state, we have
. o _
20) [“--.+ (t)K)Lf 23 (i K@D L' <n' | Hustlipdl €16 -6,
n'

where H, . (1jk) is one o the factors of Iy . (i3k) and H1te (i3k)

is the other, and Ei end E’n' are the energies of the initial and

intermediate states resnectively.

| sguation 20 correszonds to sacond orcer perturbaticn theory.
Putting 'l({n: Q‘QME and. verforming the swi over the inter-

mediate states, notinrs that either the L or D process ccn occur first

and that the ions i,;, and k muast bve near each other in order to have

an appreciable inter:ction, we can write

. . * cC »
21) Zf ' Hon‘f("‘), ( > ""a!'E <{ ‘ P‘Il.‘ PIEJ P/Lt {c"j B‘i (S“S’) ':SKSZ“.
- SewSxj- 5.4 I Cise By (S5 S5 S-c ~S2,5005. 5 ) | Pot Py Pl

where ?MS‘L is the rrojzction operalor corresponding to the i'th

ion being in the steate Moo= Ty
[

19



Including the recinrocal process, we can write
. Py ) ]
22) H...f('_\l&) = %‘2— [Cu'z Clc') ) PPy 2) Prx S SnSx ?Jb.lP&)P“
‘l'(c-uc Ky j)?}hi P*'Ia.') Prpon SviS-yoax Prat Py P K-] .

The evaluation of the matrix element for the Hamiltonian
given by Equation 22 is complicated by the fact that Bij includes
:%d, the exchange enerzy, which may or may not be known, =nd because
the terms Bi ete involve sums over lattice parameters. The
accuracy of the lattice sums will usually depend on the amount of
computer time available*.

The method used by Horono for the calculation of the line-
shape factor g(f) follows from the work of Ishiguro et allo. Jor
the Hamiltonian H in the forwuls {or the second moment given by
Equation 9 we are to use the Hamiltonian ziven bty Ecuation 17 which
is constructed by taking the one-ion energy term and acding to it
these first order terms of Hint which comaute with it. In place
of Sx we are to use Hint

Using ar intesral approximation to the latiice sums which

{(ijk) as riven in Bcuation 22.

assumes the exchange ener -y to be negligible, Hirono finds the

L
v

Sl

second moment to be of the form7

. 12 . . .
#* Hirono™ gives a very approximatc method of evaluating the
lattice sums by reans of an integretion for the case fi4' C.

# Hirono does not actually give the form of the second term nor

the value of For the case 5=3/2 but we can infer both from
his discussion of a similar cross relaxation process in an S=1
system.

20
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23) L&Y = ’)\‘(Z/z—a) At B, +2. f(z~l_) By

where ;\. and ’l‘)_ are numerical constsnts which dif‘er by less

——

3 z
than an order of ma:nitude, Bq is an average of B(j lwith i.’*D)

over a sphere centered at the i'th icn, z is the effective number
of nearest neighbor paramasmetic ions and f is the concentrstion
of such ions.* Since in most maser materialsyo.m , the second
term can be neglected comparsd to the first, thus making the
second moment concentraztion independent.

The fourth moment may be computed from

2h) k‘(f") = Ty ["‘U“‘UH ]L/Tr (H"..-(.L)k) )1

where U = H,,;f‘.'—)i() H-H H.,.fupc).

Adeglecting terms involving f , Hirono gives the fourth moment as

25) l\4<+“) w 16§ 4§ (z/z-—:)(';}'-?j )L

Thus we have

26y <FFSw 335 (z-12) (£ €27

If the lineshape were Caussian the ratio of the fourth moment
to the sguare of the second would be exéctly three. Since Hirono

gets Z =8, we see that a Gaussian shape, which is

o q(6) = @IT L) exp]-0/2 <]

is a reasonable approximation to g(f).

# Note that we have used a slightly different notation from that
of Hirono. lis Bij is six times ours. In our case ¥z 7.092.
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The above calculation suifers from th: same difficulties
that the calculation of Ishiguro et allo, on which it is based,
suffers from, namely grave difficulties are e ncountered when
HDC and the z-axis of th. magnetic complex are not rvarallel.
The root of these difficulties lics in the fact that in the non-
parallsl case the onc-ion energy term contains Sx and Sv as well
as SZ so that to serarate out those terms of Hint which comnmute
with the on=-ion term becomes exceedingly difficult. In the
parallel case this is easy becasuse then the one-ion term contains
only SZ. Another consideration is that in the non-parallel case,
except at magnetic fields too high to be useful for maser operation,
the stzte functions of the individual energy levels will no longer
be pure spin states. Instead they will be combinations of pure spin
states anc the combining coefficients will be functions of HDC,ﬂand¢.
This situation can be included in Hirono's calculation but not
without some messy notation. So if we wisht o make calculstions of
the cross relaxation trensition rrobability in ths most :eneral,
and most common, case, the non-parallel case, we shoul” lcok for a more
elerant approach than that based on the work of Van Vleck. Such an

approach is that of I-’iinkowski11

whose work is based on that of Fryce
8
and Stevens . In the following wvages we shall outline iinkowski's

calculation.
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Neclecting interections between ions, the total spin Hamiltonian

of a system of N paramarmetic ions dilvted into a diamagnetic host

crystal is N

28) Ho= £ Ho;
=t

where Hoi is t he one ion energy term.

Also

29) Hoo 1k > = € D>

where “1;"‘ D is the r'th eigenstate of the i'th ion (referred
to by Minkowski as a s in state) and E..; is th: corresponding
energy. 1f the ion has total spin S, therc are 2S5 +1 possible

eirenstates for each ion. We also have

300 Holah = £ [2D

where 'a>is an eigsnstatc of the total spin Hamiltonian {(referred

to by Minkowski as a system state) and Eo is the corresponding
energy.

In terms of gquantities associated with individual ions (spins) 3

|¢> has the form

1) a) < ﬁ”lk"}

(=

and

32) Eo"‘ n,f,-“‘l,_f,_ ... ¢+ "zs” Eases
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S+
where n, is the population of the r'th spin state and N = n.,.
- ¥z

™

There are

33) N!/n.'hz' "'nZ.SfO!

orthogonal spin states with energy EO.
A specific set of n. 's, denoted by{ﬂf} gives rise to a

i’

=
degenerate manifold | of stat=swith an energy © A projection

O.
operator on this manifold is P“ which can be written as the sum

of projections on the states spamning the manifold.

i "
3k) ?':XéPx
i’

i i
where K is one of the N-’/ﬂdqu”! states with energy ED.

The total spin Hailtonian of the system, including the interaction

~ between spins is

35) “—“Ho + Hln-h

The part of Hint that com viis with H, is

36) Hhnt,c = g?"ﬂmfpf"

As was noted in a previous discussion, Hint c broadens the
2
energy levels, Since H, and H_ commute, they can be simul-
int,c 0

taneously diagonalizaed by a linear combination of ®*product" states
of the form given in Equation 31. These states are the correct zero-
order system states and are denoted by |6::>. The "product" states
belonging to the manifold [! are denoted by I} ¥ . The projection

"
operator on the r' manifold, ? s can be written as

2h




A f_.?c,w
¢

which is a sum over the corrsct zero-order states. TFreviously we

wrote it as

s PP ER0
3

which is a sum over "product" states. Both forms ar: eouvally wvalid.

The part of H, int which does not com ute with H 1is
e
32) A"“‘- NC "é Z P HW'

This is the part that gives rise to cross relaxation effects and
will be treatesd as a perturbation which causes transitions between
the correct zero-order states.

To first order, the energy of the f' manifold is, using the

correct zero-order system states ’C—> N

39) Eg= el HIe>.

In the absence of line broadening, radiative transitions will

n A
occur between two states of the manifold in,.} and iﬂr. when

w0) [ES-ENM = WF

where f 1is the frequency of the applied radiofrecuency field.

Cross relaxation tr:nsitions will occur when

11) |E},n—E: ‘2 0
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The 1l-st evuation holds becaus:, in th: absence of line broad=~
enin , cross relaxation trensitions must ¢ nscrve energy exactly.

When line broadenins is vressnt, ths criteria bhecome

oy [€7-EX |= Kelule> - <eIHIeS I =hf
and
L) (Ecr'~€¢_'\l = A€

In the crse of Equation LO and L1 we ¥now the lineshape is a
S function while in the cas: of Equations LO' and L1' it must be

computed.

The cross relaxation transition protability is

12) Wey-r ™ * 146G 10l X 29 (F)

where 0 is that part of Hi

nt 50 which gives rise to the cross
9 R

relaxation transitions of interest. It the process of interest is
a three spin rrocess such as was the case escribad by Hirono, O

will be a three spin operator and will have the form

h3) t)“ f?;lt CDQJDC

where i:i;‘ilﬁ|

For an n spin process, 0 will obviously be an n-spin operator.

we note that the radiative transition probavility is~ also
of the form of rtquation L2 except that in that case O will be a one
spin operator e.gz. D;QSK" « Thus we see that both radiative and
cross reslaxation transitions can be treated in a uniform manncr.
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Since an operator such as O, ., operates on the three spins

ijk

ky,j, and k and only on these spins, we can write
(] !
Lk) (Cldk)=L§#<\SSf=|o~3kl sy te D

r<hs
where r,S_‘t&ZI 'I;. )“\J)")&tc and the unprimed states are in
the r’ manifold while the primed stat<s are in the A manifold.

The operatorz Y connects all permutations of Ty sj tk to all
permutztions of ry sj t‘k' Only same of these permutations are
distinguishable e.g. we saw in discussing Hirono's work that a
possible cross relaxation process resulted in all three ions winding
up in the mg o= + 1/2 state so that in the present notation rt,s?
and t' will be identical and hence there will be only one
distinguishable permutation of the parameters. HMinkowski takes
account of this by rewriting Equation Li as

c(r's'¢") ‘(hsjtkl O‘JIL,'— 5){. 7’2

mbst)

) Z , Kye =
et
C e
where @LV ‘t’) is the sumation over the distinguishabl: permu-

tations of r*s't! and m (rst): is the number of indistinguishable

permutations of rst.
- ‘ ‘
Ve note that in generzl \"\{-\": ) )Jt S‘ q.d‘(‘;!ft . If we
try to compute the matrix element in oquation L5 using first order

perturbation theory we will always get z-ro for an answer since in

cit = H, . ., ¥ H.
first order theory we can write Oijk HlJ + H:Jk Hlk where each
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of the terms operates on only two spins while the state functions
involve three spins so that a typical term of the computation will
be .
16) <res;tl Wiyl r"S)'f,")z(h_S,Wiih‘.},-')(t,Jt,g) =D
since tlft'k. Thus for the three spin process we must use second
order perturbation theory. In general, for an m spin cross relax-
ation process we must use (m=1) order perturbationt heory.

In the simplest three spin process, see Figure 3, r! = st'= t!

and r = sft. Thus K, becomes
ijk

2
L7) K\“( = :::K YL\') tl( ‘ O“K‘ Y‘: r,')' rlz )I

v
Following Kittel and xﬁ.b:r'ahams13 we can convert 2 # s by arbi=-
L‘|L
trarily choosing an origin, to
M
N N
18) é = N é N f Jiﬁ-

where M is the total number of abailabls sites, N is the total
number of paramagnetic ions and gz N/Me

Thus for a three spin process we may write

49) \»Icr”— AN Sl (éq‘:‘\‘)(%(A‘L)) .

with Kijk defined in Equation L5.
The lineshape function is again calculated using the method of

moments. The first step is to calculate the area of the line

because we wishto work with normalized moments. If '6-7 and l L>
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are correct zero-order system states of the manifolds n énd,/\

respectively, the area is definzd as
50) @ = ng‘(@mq; =T {0d'3 =T; f0*3
Ag,L

which can be ®ewritten as

51) @ = 2 Z LelolLder] o) 6>

PP pA
or using the projectlon operators and

52) G = ng Ty (F' opP? O*Pr‘)

Using Equation 3L we can express the area in terms of projections

over the "product" system states as

53) G = ZZZ ,.(P OPAO‘)“)
CAT

As before, we are interested only in transitions between

distinguishable permutations i.g. physically different configurations,

of the initial and final states. To this and we define the projection
operator

51) PL;-:t * 6(rst) PIP RS
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Where ‘@ (rst) is the sum over distinguishable permutations of

rst and p:; is the projection operator which picks out the r'th

state of the i*th ion. Thus we have

rat v l¢¢
55) O 20-., «Z T Oyx E’,.f ,

opk e

In converting the é to the sum 2 we must again intro-
) K& ¥
duce the factor m(rst)!, the number of indistinguishable permu-

tations of rst. Finally vwe have e’
(r's't t P’
s6) O .5 © e 3, PIP RS Mk Py
K $

We note that the trace in Equation 53 is to be computed in the

configuration space of N spins but O 13k operates only in the con-

figuration space of three spins. Hence we can write

57) Tr F(oqk.) @ w%)]:)( F '—(O")"))

where F(O, jk) is some function of O, 1 31 the supergcript over the
trace operator indicates the dimensionality of the space over

which the trace is to be computed and I is the identity operator.

Now

.M T TM = (@s+1)
s8) T " = Te Tz Il (251) = (25+1),
(&) ' =t
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Thus
N3 -
59) A F(Oiyr) =S+ TR (q,,,_)

Putting Ecuation 56 into Ecuation 53 and using Equations L8 and 59

we get
N~
60) G=25+1D 3Nf7‘§q£qt

with Kijk given by Eguation LS.
The unnormalized second moment for any transition line can be

written as

o MB £ 2 ICelHlG - KLIHILY] * 1<l oIl Y%

& iA
<2< [(c{yl’cxc-loll-) GHol ORI |[eds (e X In 16

_(‘_|H\L><Llo *1e-d
= £ P UPoPA PoP WP X0 SPTHPI P PO P

wh_e’re in the last equation, the second factor is the adjoint of the

first.
since HE &, Nq, we can write
0)

A S .. pA
62)P"uf>'\=§§?;u& -gjngp, Hi P

’

We wish to select in Equation 62 only those states ‘A,7\>
within the Al manifold which are connected by the terms of H,
ij

uv
To do this, we introduce the selection operator Pij which

32

LI {
EE I I - R I B BN B B B G B O EE I B B .




. *

operates within the /\ manifold. We can thus write

&) H = £. 5 ?WNL P\W fp .

) a 2V Y L‘>J

Thus Bquation 60 becomes

o 0 T {(§ g Som -2 Dre £
X (él'éﬂ\c

E H H Oq\:() }
He ° 2 de
where the subscript 3 indicates a three spin process.

After taking account of all the conditions on the indices
ijklm and abede in Equation 64 which ensure that, in general,

M(z) is non-vanishing (see Minkowski for the details) we get
v-%

&) l‘lﬁ) Qs Nf"fC +s+O Nfsfﬁ)'“?

where
‘ 1 gt A L
66) Gy yp? G5t I<est| [“'-)*“m*“s:.,o.,ﬂhs't)l
m(vst)!
and

61 Gypqrs X Krstufl g+ Hg e F ety 2

"R W m(rstu)
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The normalized second moment is thus

68) LKL%> = Ms) (i Gc,x)/ (Z an)

+ Q@ SH)—'S (%,QC”"(Q / K'—)K

I}

Since in ordinary maser materials f is of the order of 13,
we can neglect the second term in “quation 68 compared to th: first
and thus we see that both !Minkowski and Hirono find the normalized
second moment to be concentration independent. Using a heuristic
Justification, which we will not go into, Minkowski finds that the
leading tem in all of the higher normalized moments is also concen-
tration independent. Thus we may taks f(f) to be concentration
independent,

Kemembering that an m-spin cross relaxation process requires
(fn-l)'th order perturbation theory, rinkowski approximates the

area sum by

e 22—
(,,, D m-)

69) ZKt)u....."“ ( /"‘C‘ ) ('/'F

where g is the spectroscopic splitting fzctor, @ is the Bohr
magneton, dis a measure of the distance between spins (of the
order of lattice dimensions) and T is an averagc spacing between

energy levels., He similarly approximates the unnomalized second

moment sum as

3L




70) Z 6:1_,'( v (s1-0) (37. 2/“43)?4'!\ (l/f)

Thus the normalized second moment is given by

m oty « (36/nd Y

which is independent of ths order of the process. Using the values
d = Li.5A and g =2 and assumingz the concentration low enoughs o that
only the concentrztion independent term of the second moment is
significaht, we find that, assuming a Gaussian lineshaps, the 'e-l/g
linewidth for any order cross relaxation process is of the order
£ 550 mc.

At the center of the line, if we assume a Gaussian shape, we

can approximate the cross rclaxation time for an m-spin process as

’ -) m- )
72) %'.._‘,: “L\\(/( ‘fz),zm f( (37.&71.‘;’5) ( ,F 2(m-~1

Thus we have

) Tk (g/@( e hd’)

\‘1‘

which, in the paramagnetic region, is always less than one.
That the above aporoximation are extremely rough ones can be seen

most readily by referring to kinkowski's own experimental evidence.
His energy level setup is illustratsd in Figure L. The operating

point was chosen so that f13 fo) and 2f23 = 21 'f3h
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In the crystal he used, Cr3+ in K3 (Co(CN)é' this situation occurs
at HDC = 735 gauss, (§ = W /2, and © - L9950'. By applying a
strong saturating siznal at f._ « £  he was able to reduce the

13 2L

large number of possible cross relaxation processes to only two
significant ones, 2fy3 = £,y (the a process) and 2fyy = £3),

(the b process)s His calculation of T21,a and '1'21,E agreed well
with his experimental re:zults. However his results do not bear out
the rough avproximations made zbove in that the a orocess has a half-
width of 116 mc while thc b crocess has a half-width of 58L me.

The intensity at the center of th> line of the a process is ap roxi-
mately three times that of the b process. Thus the approximations have

only order of magnituce validity. Wwe also see that the only essential

difference between the a and b processes lies in the different state

functions involved, and so we may szf=ly assume that this is
responsible for the different value. of T2l for the two processes.

To summarize what can be learned from the guantum mechanical

calculation of T21, we can say that for an m-spin process the total
m=1
concentration dependence, which is j’ s is contained in th: matrix

elements; that the lineshape function is, for the usual values ofj:,

concentrztion independent; that the value of T,. depends critically

21
upon the state functions of the energy levels involved in the
process; and that, to within a numerical factor probably less than
ten, the linewidth is independent of the order of the process. Per-
haps the most important thing we have learned is that, if we know
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the value of the exchange intezral or, better yet, neglect it, it is
possible to performea reasonably reliable order of macnitude calcu=

lation, albeit a long and tedious one, of the cross relaxation

transition probability.
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CHAFTER TITI
RATE EQUATION ANALYSIS

In order to describe the effects of cross relaxation on the

population of the various spin energy levels, we need a set of equa-
tions which include all relaxation and drivin; force terms. Such

an equation is

wy Any . ?m) + 208 4 ?__"'&)

at s-L ¢t It
where ny is the population of the L -th level and the subscripts
S=L, rf and cr referto spin-lattice, radiofrequency driving force

and cross relaxation effects respectively,

The spin-lattice term is giv:zn by

CNCLTS W é(w,‘n, wyhni)

where(&)ij is the spin-lattice transition probability. At thermal
equilibrium, if hJ;Sis the only transition causing agency present,

we have

6 L= W,
where Ni is the thermal equilibrium population of the i-th level. In

this case a Boltzmann distribution will prevail among thg Nils and thus

. ~htiy i >
77) C!i -3 NG
Ve 3>
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and
W, ! L\‘(‘L)/ 'Qr
76) Tie = € 2>
where T is the absolute temperature of the lattice (assumed to be the
same as that of the both).
Throughout this chapter we shall make use of the usual high

temperature aprproximation hf £4 KI'. Using this we may write
9) Ny = NV l*‘ﬁd) >¢
) it Tae

and

80) Wy = Wy q *‘_l"fg) )>L

<7
The approximation holds at helium temperatures throughout the
cgntn'.meter wavelength region but brezks down in the millimeter region.
In spite of this, and evaen though we are primarily interested in the
millimeter region, we uses the approximation because carrying through
the exponentials adds little to our understanding while greatly
complicating the solution of the rate equations.

The driving force term may be written as
. Lj
dn, > ho-n; )W
80) T_é")r( )é( ) L) rt

¥
where W\,.{_ is the radiative transition probability.

Lo
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In the last chapter we computed for a three spin cross relaxation

process the quantity

) Wer= WEN$7(E Ky 345D

which is the cross relaxation transition probability. To see how
this fits into %2_.\ ‘_vlet us look at th= situation shown in Figure 5
where 2f . = féB. In this case W, will give us the probability
that three neighboring ions will make transitions such that n

1
n, +2, n2-§n2 -3 and ny - n3 + l. To find the totzl number of

—>

processes per second at time t that, say, remove three ions from
level 2, we must multiply wcr by the probability of finding the
three ions in level 2 which is (ﬁz/}.’)B. The probability that
there are three ions at the sites of interest is already included
in Equation 381, Since each process removes three ions from level 2,
the number of ions lezving level two cer second at time t due to

cross relaxation effects is

- 3
32) 3"1> = 3N, W,
Dt /v NT

, .
where UCv = uﬁ\’ Ih/ o Lcoking at the inverse process (nl e

n; -2, n, %nz +3 and n3-§n3 -1l) we readily see that

+
83) }1?. = Sh}hs ‘\"C\-
E-2 A o NZ

L1



so that the net number of ions entering level 2 is

2
8L) ) 2 'S(h. Ny - n,_) “*”cr
cr

NI
Similarly we have
3 2
gs) Oy L A (ny-N wny We
>t /cy N

and
86) Zh ( -nr Ny ) W
(& o

Using an obvious generalization, we see that for the case mfn = f23,
which is anm + 1 spin process, we have )
m+! e \
87) bh) > M ( - nl) Wer
’ cr NW\

'
where LQU- must now be computed for an m+l spin process.

Now we are readr to investigate the possibility of a harmonically

pumped maser,

For a first case let us consider the energy level situation

shown in Figure 6 where mf, . = f We can write

23 = "uy°
aH:
+(h—2_ hg — N5 nl) ch

NM
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Using Equation 78, we can rewrite the above as

hfiz
89) é\:‘ = Walhy-n +nz}\{cz—] + wi[hy-nn 'c;]

+W +hiian (mﬂ\b —h 3 >W +
‘4'['1‘!' h, Ter -] b

We can simplify Equation 89 as follows. In the region where L'F<<K_r,

90) N = Nyt B¢
where N(D>> AL

Thus, for example, we have, to first order in the small quantities,

h§ bt = N, hf2171- hf h{
91) -:L n,\w N u. N, ‘d} l ,.;,.—-L] R N 'C;_l
where we have used Equation 79. Now

4 4
2) ZNn.= ZN=N,
=/ =

Using Equations 71 and 92, we have

1' N , wu N
N T i s thr) | 3
KT

. .




Hence, using the high temperature approximztion, we see th{it when the
difference between two level populations is not involved we can replace
n. by N/l

If we wish to use the scheme shown in Figure 6 to obtain maser
action where the signal frequency is higher than the pump frequency,
we will want to aprly radiofrequency pump power at f23 so that o = n3.

Thus letting A;j = ny - ns vhere j > i, we then have, in the steady

state,

95) g?:_(’ 0 = .3\[— 12 1-1\/ l'\‘flz.]-f-k)\—;[A'lfN ‘l'f";]

+ Wea [‘At‘! fﬁ l":fl"] ~ A (’L) wcl:t-.

letting (..l:k=(4) ‘(,) U(_r- , we can transform Equation 95 to
N

%) Az [Wiz 2]+ M| Wiqtwc 1=
r[w'n'ﬁl"‘“rsﬁ;* WM‘FM].

There has not been, to the authors knowledge, any experimental

or theoretical work which would enable us to evaluate reliably the

various spin-lattice relaxation constanté' ULj which appear in

Equation 96. At the present stage of our knowledge, we can do little
more than to hazard a guess at their relative magnitudes. We do know
that, in general, W W éf LK and )4 & . In spite of this
last statement, we will make the approximation that all the W) 'S are

equal. We do this, in the light of the fact that we cannot evaluate

L5




the individual \0.;';5, in orcerto put the solution of the rate
€quations in a particularly simple form showing explicitly the
dependence of the various popualation differences upon the physically
significant parameter N'c'\-/wg,'.

Making the assumption that all the w;_j’S are equal and

denoting this wvalue by k];') s We can then write

M) 2Am # B (r Y - gE_T(EQrF.ﬁ ),

98) 2 Ayt hiq (|+‘%_1)=i) = %Z%T(ﬁqfﬁqw‘ fr4)

99) Arl "“A24 *A.q: O.

where ~quat on 97 is derived from £cuation 96, Equation 98 comes from

transformin the 2quation for oa(p_q. in the same way we transformed
&

the 8quati n Tor ca’rt_n and Zquation 99 is an identity. Thesethree
€

Bcuations for a soluable set of three simultaneous linear equations

from whi:h we can extract the quantities -A,z,AzqdﬂJ A,q .

Solving thz equation yields

(A_’"
100) A,1 =é,_~,=l__[2+(m+:) Z'JE:] ‘F2.3
NG ° 9 fq

O T
3 3 We
2(a+ CI::)
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tt
101) Azq - Axq = | - [2 +M+1) %ﬁl’] f?-_z
) <)

Pad A “'7_1»
“
and
102) Ay _ e = 2
0'4 2+ Wer

’ - ’
where A;""-NL" N ) s the difference of the two level popu-

lations at thermal equilibrium, and § is a parameter which measures
the degree of saturation of the 1-kL transition due to its harmonic
coupling with the externally pumped 2-3 transitionm.

In order to have a maser operate at the frequency f13 s for
d
example, we must have A:;/A@(O . We see that, for given values

) " .
of m and Wer / h)i," , the maximum ratee of the signal frequency

£ (= f13) to the applied pump frequency i‘p(-_- f23) will occur when
Ay=0 . We kmow that the practical maximum of the fs/fp ratio

but, for comparitive purposes, it is useful to compute the ratio at
A5=0 o Thus, for the present case, the greatest possible

value of £ /f is
s p

103) ﬁ) o Arlme U
A=0

e Ar2 Wi
K
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As a functi £ W" IN" fﬁ') has its greatest value
a on o cv Qj, ‘FP A=° S S greaves
" ’
when Wc.r, u.;: od . In theScase, Equation 102 shows that ?:0
hence there is complete cross saturation. We then have
= +1

£)F°
p/ a0 2

10L)

o
We see that for finite values of Wey[W(j  the available
value of :E‘S/fp is reduced from the maximum. This corresponds t o
incomplete cross saturation. We can seethis more clearly as we

rewrite Equation 103 in terms of the saturation parameter E thus

getting

105) f&.) = _‘:'('-y)*' '
+¢ /A=0 2

Thus, for a given value of m, incomplete cross saturation reduces

the effective value of mand thus reduces the available fs/fp ratio.
Since M2 , we see that is is theoretically possible to operate

a maser using harmonic cross saturation with a signal frequency greater

than the pump frequency. Naively we would say that, by making m large

enough, we could get any desired fs/fp ratio. However, as we have seen

in Chapter II, @Wecy is a function of the order of the cross relaxation
process and, in the paramagnetic case at least, the higher the order
of a spin process, the less likely it becomes. We recall from the

last chapter that, putting numerical values into the admittedly rough

L8
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approximation of Wecr ("\*")/ Wer-(m) given in Equation 73,
Qg‘.("‘*‘) is at least one, and more likely two, orders of

magnitude less than Qu.(@. This point will be taken up later in

conjunction with same experimental data.

We note that all of t he above relations and comments are equally
applicable to fs = f2h- e The case at hand, mf23 = f]J.; and the pump

at f23, is called by Aramss, the symmetricel case because fg / fp is

the same for both the possible sipgnal frequencies f13 and th'
What Aramss calls the anti-symmetric case is shown in Figure 7.

Here mf12 2 f2h and the frequency of the pump source is fl2' The

solution of the relevant rate equations yield

106) AOQ =~ EH-(wnz.) ‘:3%..;'] %':’; 2 l—[lm"(l-k)-tm(?*{)fggs_x_

'3 T+ Yer 3(a2m+1) 3
=

1y
107) AB‘I = |- Qm|)":_};r‘ ‘%qu '-—[1'“(“‘?)‘*'] -_%;2:
3 3

o (1)
34 T+ Wer
wij

and

108) A5 q _..? . 8m+4 N
D e -4
>4 m(8+3 Vi

In this case, the maximum possible fs/fp ratios are
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We see that using the f3h transition in the anti-symmetric case

as our signal frequency, we can get, forthe same values of m and

(X .
Wey I W ) s a higher value of fs / fp than for either of the

possible signal frequencies in the symmetric casz.

If we wish to operate a maser using either of the schemes just
discussed, or for that matter any maser, we must make sure that there
are no interfering cross relaxation process in the region of interest.
.As an example of the effects of interfering processes, consider the

symmetric case where we have the additional cross relaxation process
"
P‘F\Q.'; 2% . This will add the (linearized) term Ucr(-P)x
[—'PAmfAZ_q] to the rate equations.Thus the interfering process

tends to make both Ag;\ and A24 approach zero. When we recall that



for the symmetric case Alf‘D and A;4*§ O, we see that the net
effect of the ?&z’ 'Ge.q rrocess is to make all of the various
population differences approach or equalt o zero. The only way out

of this difficulty is to chocse an operating such that all potenti-
ally interferin: vrocesses are either absent or of vcry low intensity.
Recalling the statement that cross relaxation processes are significant
only in the rezion where Eéﬁl < T'q s we see that we can,
quantitatively, ignore all those interferins processes whose marni=
tude saVisfiesthe condition Lo=vkr ¢ | because in these cases the

T2 W i

effects of spin-lattice relaxation will be the dominant effects.

The above inequality is called the isolation condition by Bicknellm.
It is more stringent than appears at first glance because of the
finite linewidth of cross relaxation processes. Thus processes which,
at our operating point, are non~energy conserviny up to around 1 Kme
may rossibly not soiisfy the isolation condition. It is thus ossible
that in a crystal which hacs many rotential operating voints suitable
from the standpoints of signal frecuency, fs/fp ratio, ‘0:‘./60‘,,
ratioc ete., there may well be only a few, one or even none that are
suitable when interferins cross relaxation processes are taken into
account. A similar statement h0lds for conventional three level
mascrs. However, as shown in Ejuation 105, for a given crystal and a

given transition whether a maser with £ much greater than fp can
. s
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be made depends critically uvon the saturation parameter. For this
reason and because of the lack of any existing data on ul" and k)c".
an experimental investig:;a’cion was carried out for the measurement

of cross saturation effects in ruby. This investigation is
described in the next chapter. Obviouslywhat is true with respect
to ruby does not necessarily apply to other crystals but the experi=-

mental data will give us an idez of what values of § can be expected.
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CHAFTER IV

EXPEI'IMENT AL INVE:TIGATION

In order to gain some idea of the possibility of building a
millimeter maser d evice utilizing harmonic cross saturation, we
attempted to measure the effect in ruby at centimeter wavelengths.
Among the reasons for using ruby are that it is easily obtainable,
its energy levels are well known and that the results obtained will
also be characteristic of emerald, a material sultable for millimeter
wavelength masers, which is quite similar to ruby except for having
a zero field splitting of 53.6 Kmc. which is L.66 times the 11.5 Kmc.
splitting of ruby. The operational frequency range was dictated
by the availibility of the components.

The first step in the experimental process is to choose the

lower pump frequency and then to construct a transition map showing

the pump frequency and its first few harmonics as a function of HDC
aid © , the angle between Hyg and the c-axis of the crystal. A
portion of such a map is shown in Figure 8. The intersections of
the harmonic transition curves with the pump transition curve serves

to locate the various possible operating points at which we can

measure the cross saturation effect using our apparatus.

Sk
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Figure 9 shows a schematic diagram of the experimental setup.

We see that the setup consists essentially of two simple crystal

video paramagnetic resonance specctrometers, one at X-band, 11-12 Kmc,

with provision for harmonic mixing of the two signals so as to
enable us t o compare the frequency of the V-band signal to the
frequency of the third harmonic of the X-band signal. For our
harmonic mixer we used a standard X-band crystal and mount and
this combinatidn gave excellent results. The microwave cavity is
11lustrated in Figure 10. With no dielectric material inside the
cavity, the dimensions of the cavity are such that it is above
cutoff for V-band and beyond cutoff for X-band. With the dielectric
spacer and the ruby disk in place, flush against the top of the
cavity, X-band above cutoff propagation is allowed within the
volume occupied by the dielectric-ruby cylinder while only
evanescent modes will be found outside this region. Thus, unless
the moveable plunger, which tunes the V-band resonance frequency,

is extremely close to the dielectric, there will be no change in

the X-band cavity resonance frequency while the V-band cavity

resonance frequency is being changed. The X-band cavity resonance

frequency is fixed by the dimensions and the dielectric constant

of the dielectric-ruby cylinder and is therefore not tuneable,

This latter is no hardship since all we need at X-band is one well
defined reasonably high Q cavity resonance somewhere between 11

and 12 Kmc. In practice we can always get at least one such resonance

by, if necessary, changing the height of the dielectric spacer.
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The measurement procedure is as follows. We first set the X-band
frequency, with the klystron in thez c.w. mode, to the center of the
X-band cavity resonance. Then with both klystrons in the c.w. mode,
we feed some X-band and V-band signal power into ths harmonic mixer,
tune the V-band frequency until we get a zero-beat with the third
harmonic of the X-band frequency and tune the V-band wavemeter to
this frequency and the X-band wavemeter t o the X-band frequency.

We then switch both klysirons to the f.m. mode and, using the

wavemeter pips as markers, center both cavity resonances in the

respective klystron modes. Now the magnetic field is adjusted so

that we can see simultaneous X~band and V-band paramagnetic resonance

on our oscilliscope (s) at the cdesired operating point. A dual beam

oscilliscope is highly desireable for this work although it is
possible to use two single beam oscilliscopes. Hext, with the
magnetic field off the paramagnetic re.onance voint, we read off
the distance Q=Qeopg-res for both cavity dips, making sure that

we have moved both wavemeter pips out of the picture. (see Figure 1la)

Then we must measure the height b which is the height of the mode at

the desired operating frequency in the absence of a cavity resonance
at that frequency. In the case of the X-band, we do this by placing

the wavemeter pip at a convenient point on the shoulder of the mode ’

(see Figure 11b), shorting the waveguide as close to the too of the

dewar as possible, adding enough attemuation to the line to bring the
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marker pip back to its orifinal and then measuring the distance b
(figure 10b). Then return the apvaratus te the rrevious state.

Normally, all that has to be done to measure b for th: V-band mode
is t o move the tuning plunger so that no cavity rezonance canbe
seen anywhere on the cavity mode. Sometimes, due to the fact that
the V-band cavity is highly rulti-moded and hence there will be
many resonances close together, the above procedure is not feasible
and then we mezsure b in the same w2y as we do in the X-band cace.
From these two pieces of cdata, Reff-resand b, we cen comnute, in the
manner shown below, %o s the cavity coupling ocoefficient in the

7*

absence of paramagnetic resonance

Then, reestablishing the condition o paramagnstic re:onance
and keeping ths V-band power level low enougk so asto caus: no self-
saturation of the V=band transiticn (it must be the same power level
at which we measured the a znd b descrived above) and the X~band
power level at the detector constont by means of a comrensating
attermator in front of the X-btand detector, we proceed to measure
a, and a_as a function of X-band power starting at a low enough
X~-band power level so that no self-zaturation of the X-band transition
is discernable in the first measurement. This is called the unsatu=-

rated measurement. Ve continue thc measurements until the X=band

# This assumes that the length of waveguide between the top of the
dewar and the cavity itself can be neglected, which it can be.
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transition is completely self-saturated or an increase in X-band

power causes no further incresse in the VU=band cross satur:ction,

whichever comes first. Ve then return to the initial conditions
and start in again making measursments only this time we change

the V-band frequency to 'f‘v"—‘ 3+{'"A‘ s where A. is ths smallest
convenient frecuency change we can make. Aftert hese measurements
we shift to a frequency increment AZ where ‘Az.l M| A,, , then
to an increment ' A3l S | A)_l etc. We should continue to make
measurements out to values of ) of the order of + 400 mec or so

or until the value of &y with the X-band transition completely

saturated becomes stationary or begins to decrease. In this way we

can find the rough lineshape of the process, since over these small

changes in PD and © we c:n take U{j to be constant; the value of

C
wc\'/k)lj 3 the degree of cross saturation do to spin-lattice effects
alone, since in the far wings kk\.\ao y and hence somethning

about the value of Wgy itself. Ideally, those are the things: e

shvould find out by puttin;: the data into the computation method
described below. In practice, various problems arose in our particular
experiment which prevented us from getting good gquaniitative data
concerning Wey Cor E) e« These problems are discussed irmediately
following the computation method.

Computation lethod

For any microwave cavity we have
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where Qo is the total unloaded Q of the cavity, Q. is the unloaded
Q of the cavity in the absence of paramagnetic resonance absorption
and includes the olmic losses due to the finite conductivity of the
walls and of the dielectric media inside the cavity etc. and Qm is

the magnetic Q which takes into zccount only the losses due to

paramagnetic resonance absorption. We can rewrite Equation 111 as

112) QQ-’ Qch/Qc*@m.

The cavity coupling coefficient, Q » can be written as, in all but

a few very unusual cases which we need not consider here,

13) B= Q/Qaxt

where Q..+ is external Q of the cavity system. Combining Equations 112
and 113 gives

m) 3= (QePum / Q@) (/ Quext)
In the absence of paramagnetic resonance we have
ns) Go = Qe / Qaxt.

Thus

1) B - Qm
or 9 Qc"QM

1) Qu= Qe (#o)/ - B/p)
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Denoting by the subscript u the case where paramagnetic resonance
absorption is present but there is no saturation of the transition
whatsoever, and by the subscript s the case where there is evidence

of saturation, we have

118) QMS - (@o’.@s) j—.‘:-. )
- Qua s/ \GBu

The magnetic Q of a transition is proportional to the population
difference between the levels involved in the transition. In the

complete]y unsaturated case, the population difference involved is

O
Just the thermal equilibrium population difference, €\ jo (using
Qnd 1n +he saturated cGSe

the notation introduced in Chapter III),Ais denoted by A‘—,) e Thus
we get

n9) Qs = By 2 ¢ < (PooPs (‘“:~
Qms“ Ao" ? Cs ) @"‘@“

-

where ; is the saturation parameter also introduced in Chapter III.

Now

120) @= ~—-......'*'r"
I+~ |

where (' isthe reflection coefficient measured at the cavity

terminal in the case that the cavity is undercoupled. Since these

terminals are not accessiblc, we use an indirect method of measur-
ing “1‘ « The power incident on either one of the detectors in the

setup is
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121) .PDCT'%: PKlVS &, Ao “-"

where ?KIYS is the power output of the klystron tube, o § is an
attenuation factor which inclu-es all the losses in th: microwave
line between the klystron and the cavity and d}. includes all
losses between the cavity and the detector. Off resonance, a
microwave cavity of the type we have here acts as a short circuit
terminating the line. In this case “}6{ -ns‘-: l. Ifwe keep the
power levei incident on the crystal detector low enough, we can
assume square law detection i.e., the output voltage is proportional
to the incident power. We remember that distances measured on the

oscilloscope screen are actually voltages. Hence

122) ‘Pll: ‘&"

sinpe the attenuation factors are constants and we take care to keep

Pm}(sconstant. Thus we see that, using the experimentally measured
quantities a and b, it is a relatively simple matter to calculatepand
hence, using the results of chapter TII, t.)c..lw;; o The accuracy of
the final result may not be too great even if the experimental con-
ditions are perfect because the closer the transition comes to being
completely saturated, the closer (s approaches Bo and Equation 118
shows that we are then subtracting two nearly equal quantities
neither of which is known to great pi-ecision because of the difficulty
in getting readings of more than two significant figures from an
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oscillocope. It would have been betier to use a c.w. system rather
than the f.m. system we did use thus enabling us to utilize a more
precise readout system such as a meter or a chart recorder, but,
because of the time and expense inwolved, it was felt that to

build the neccessary a.f.c. systems for the ce.w. setup would be
foolish as there would be no further use f or them once this

project was completed.

Much more serious problams arose which made the accuracy of the
calculation a moot point. One was the nonerepeatability of the
quantitative data. It was possible on only a very few experimental
runs for us to be able to take a set of data at a particular frequency
and to then immediately take another set of data at the same frequency
and to have the two sets of data asjree to within a few per cent. A
convenient checkpoint to use for checking the compatibility of two
sets of data is the valuz of a when the magnetic field is off para-
magnetic resonance. This value changed from run to run. It was
also noticed that during the appiication of a large amount of X=band
pump power, such as is necessary to ensure complete saturation of
the X-band transition, the problem was aggravated by a change in the
V-band cavity resonance fregquency. This éhange in cavity frequency
naturally precluded any measurements.

The shifting of a from run to run was never cleared up but,

although it was a serious handicap, it did not make the experiment

impossible because there weretimes when this shift dicd net oca v,
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A plausible explanation for the shift of the V-band resonance
frequency with X-band power is that the X-band power boiled off the
helium inside the cavity. The peak power available from our tube,
an X-13 klystron, was of the order of 90mw. and of this about 30mw
or so was the maximum power into the cavity and this is sufficient to
cause boiling. Such pover was needed because of the size of the
sample which was in turn necessitated by the lack of sensitivity
of the V-band spectrometer. In an effort to curve the problem we
tried operating below the lambda point of the helium but to no
avail. We also tried to keep liquic helium out of the cavity.

Since the cavity could not be sealed off due to the hole necessary
for the plunger shaft in the bottom wall of the cavity, we did this
by turning the X~band power wp to maximum and keeping it there until
no further change in the V~band resonance freguency was observed and
then on a heater element, which was a resistor, located in the space
between the bottom side of the plunger and the bottam side of the
cafity. Since the ruby was in direct contact with the cavity walls
which in turn were in direct contact with the liquid helium, there
should have been no great rise in the temperature of the sample
particularly as the heater pover was kep£‘at the minimum level which
would keep the V-band resonance constant in frecuency. This technique
was only partially successful but it did enable us to get one piece

of quantitative data.
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Our data was taken on the three spin cross relaxation process
2 f._=f_, « There we found that the maximum degree of cross
12 2ly
saturation was about‘g‘z{:'.u.rhis corresponds t o, making us of
Equation 108, chlwq = 27.6 and to a maximum fs/fp ratio of,

using Equation 107, fé_) = fﬁ]) = LS . These firures
“'f Az0 F‘ A<D

should not be taken too literally but they are in the same ballpark
with figures from other workers and tend to cast doubt upon the
possibility of obtaining fs/fp ratios significantly higher than one.
BJ’.c}mell]"4 examined the case of 3"3q= 'E‘;‘“*‘szl*ouby at 1.2°k
and found no inversion whatsoever, but does not give a value for ?.
He measured ; for the process 3'fz_3=ﬁqin the same crystal and got
E: ,QQ but he did not look for any inversion because of his use

of the criterion that a useful situation for maser action must have

‘L:%! ‘>,100 which is equivalent to saying that, allowing for his
8
claimed 1% experimental error, } must be S «01 expz=rimentally or

theoretically, zero. With ;20 there is, of course, no diminuvation

of the fs/fp ratio and this is his reason for using the criterion.

In any event, F = ,06 would yiéld %'BA'-’Z N R %{j w3l ,

This was the smallest value of } for any four spin process he
measured.

Mims and McGeelS found that Tpy for various m = 2 processes
in 1% ruby ranged frem .2 to 1.3 x 1073 sec. with most of the order of
1 x 1073 sec. They also found that at L.2%, TR .1 ¢ m sec.

Assuming that Pace et 3116 are correct, T, X 1/T and thus at 1.5°K,
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Ty b 28C"1 1 sec. For a 1% concentrstion Ty = 280 x 103 sec.
Thus -;Lz\: "t,i:; A 280 for m = 2 processes in
1% ruby at 1.5°K.

Increading the concentration of the paramagnetic ion will
increase the value of wcr but there is an upper limit to the use-
able concentration. This limit is given by the concentrztion at
which strong cross relaxation effects are observed between all
Pairs of transitions irrespective of the energy Mbalance. Experi-
mentally it is observed that, in ruby, such a general cross
relaxation effect occurs at concentrations above 0.15%1h’ 15.

When we remember that in an m + 1 spin process is less likely
than an m spin process by at least an order of magnitude, we
readily see that masers with value of fs/fp much greater than one
are not possible in ruby at lecst nor do they seem very fersible
in other substances unless cne can find a substance which has an

extremely long spin-lattice relavation time, at least an order of

maénitude or,better yet, two greater than that of ruby, with a
comparable cross relaxation time. Thus, at the present time, it
would seer that gro-test use of cross relaxation in maser devices
at millimeter as well.as at all otherw a\félengbhs will be to aid in

performance of conventicnally pumped masers.
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